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In an under-expanded supersonic jet, the interaction between shock-cell structure
and vortices in a mixing layer generates intense tonal noise, called jet screech. This
noise generation can be explained as a shock-leakage process through an unsteady
vortex-laden mixing layer. This paper studies the shock-leakage mechanism based on
a geometrical theory and direct numerical simulation (DNS) in two dimensions. In the
limit of weak shocks, the analysis becomes analogous to geometrical acoustics: the
eikonal equation demonstrates that shock waves tend to leak near the saddle points
between vortices. Analysing the wavenumber vector, it is shown that the local vorticity
behaves as a barrier against shocks. Using the unsteady DNS data, trajectories of the
shock fronts are computed with the time dependent eikonal equation. Furthermore,
the interaction between unsteady vortices and a compression wave is solved using
DNS. The geometrical theory shows good agreement with DNS for shock-front
evolution, but the amplitude of the leaked waves agrees only qualitatively. This
study also investigates the effects of a temperature difference across the mixing layer.
The analysis based on total internal reflection and the numerical results of both
geometrical acoustics and DNS indicate that the direction of the radiated shock noise
tends to rotate downstream as the jet temperature increases.

1. Introduction
When a supersonic jet is under-expanded, the pressure mismatch generates a shock-

cell pattern, which must be confined to the core region if the jet flow is perfectly steady.
The angle of weak shock cells is nearly aligned with the Mach angle, and this angle
exceeds the ‘critical angle’ beyond which total internal reflection occurs. Therefore, no
acoustic waves associated with the shock should propagate across the mixing layer.
However, flow instability invokes large-scale vortices in the mixing layer, and these
disturbances interact with the shock-cell structure. As a result, some acoustic energy
associated with the shock can propagate across the mixing layer and, in turn, radiate
as a discrete tone in the far field (see figure 1). This acoustic radiation, referred to
as shock noise, propagates even upstream and excites new instability waves from
the nozzle lip. Thus, the whole system composes a feedback loop resulting in large
resonant amplification of discrete tones. In fact, this phenomenon, called ‘jet screech’,
has been investigated in many experimental studies (Krothapalli et al. 1986; Walker
& Thomas 1997; Panda 1998, 1999; and Raman 1999 for a recent review), and the
frequency of the tone has been successfully predicted (Powell 1953; Tam, Seiner &
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Figure 1. Diagram of jet screech.

Yu 1986; Tam 1988; Norum 1991); however, its intense sound generation mechanism
still remains somewhat elusive.

To explain the tonal noise generation mechanism, several studies (Howe & Ffowcs
Williams 1978; Tam & Tanna 1982; Kerschen & Cain 1995) have modelled it as
nonlinear interaction between the shock-cell structure and shear-layer instability
waves. Although these studies explained weak sound emission, they were not able to
explain the intense noise generation. Furthermore, success in a theoretical prediction
of the waveform of shock noise as well as its amplitude has been limited. A recent
work (Manning & Lele 2000) introduced geometrical acoustics to explain the sound
radiation pattern of shock noise. In fact, their computational results successfully
visualized the shock-leakage phenomenon, and the comparison between the linearized
Euler equations and the numerical computation of the eikonal equation using the
Stuart vortex model (Stuart 1967) showed good agreement. However, the validity of
the high-frequency limit for standing shock waves was uncertain, and the amplitude
was still unpredictable.

The objective of this paper is to identify the mechanism for intense sound generation
of shock noise and to predict its amplitude as well as the wavefront evolution. The key
idea exploited here is the coincidence between the ray trajectory and the shock-front,
in other words, the similarity between geometrical acoustics and shock deformation.
Making use of the similarity, this study investigates the condition for shock leakage,
especially focusing on the effects of the temperature ratio across the mixing layer.
Furthermore, this paper studies a method to predict the amplitude of shock noise
using a geometrical theory.

In the past, the interaction of a shock wave and weak vortical disturbances
has been extensively investigated (Moore 1953; Ribner 1954; and others). These
studies have shown that vortical disturbances distort shock-fronts. A method of this
type, so-called ‘linear interaction analysis’, assumes small amplitude in base flow
disturbances although the nonlinear jump condition across the shock is taken into
account. On the other hand, weak shock motions with an arbitrary base flow have
been also investigated. Keller (1954) initially developed the theory, and Whitham
(1974) extended this type of analysis for nonlinear shocks. Several studies (Kevlahan
1996; Monica & Prasad 2001) have computationally investigated these methods;
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in particular, Kevlahan (1996) studied the interaction between a shock and a two-
dimensional vortex array. However, most of these works have focused on steady base
flows. The present work solves unsteady shock motions with a large-scale unsteady
base flow by simplifying the jump condition as isentropic and developing the equations
in space–time coordinates.

The main point of the theoretical development is as follows: a line of discontinuity
corresponding to the wavefront of a compression wave or a weak shock can be
solved using the eikonal equation (the ray-tracing equation). Likewise, the strength
of the discontinuity can be given by the solution to the transport equation. The key
is to replace the phase part of geometrical expansion (exp(iωφ)) by a sharp ramp
function (such as, tanh(φ/ε)) and to replace the amplitude part by the strength of
discontinuity. Consequently, the high-frequency limit (ω → ∞) becomes analogous to
the steep limit of the ramp function (ε → 0). Namely, the governing equation derived
based on geometrical acoustics is identical to the convective wave equation for the
evolution of discontinuity.

This analogy gives the condition for intense shock noise generation due to large-
scale disturbances. If a ray initially aligned with the Mach angle penetrates the
mixing layer, small portions of the shock radiate to the far field as sound waves. The
system of the eikonal equation shows that the velocity gradient tensor characterizes
the evolution of wavefronts, and the decomposition of the velocity gradient tensor
implies that vorticity distribution behaves as a barrier against shocks. Therefore,
shocks tend to leak from regions in which the local vorticity becomes weak, i.e. near
the saddle points. In addition, the effects of the temperature ratio are analysed by
comparing the Mach angle and the critical angle of total internal reflection.

The theoretical analyses are verified by performing direct numerical simulation
(DNS) and also by numerically solving the time-dependent eikonal equation. As
a model problem, a supersonic mixing layer (M1 = 1.2) is computed using the full
Navier–Stokes equations in two dimensions, in which the interaction between the
compression wave and the unsteady vortex-laden mixing layer is directly solved.
Making use of the unsteady direct numerical simulation (DNS) data, trajectories of
shock-fronts are calculated based on the time-dependent eikonal equation. The time
evolution of compression and expansion wavefronts obtained from DNS is compared
with that solved using the eikonal equation; similarly, the amplitude measured from
DNS is compared with that using the transport equation to study the directivity. The
comparison of the wavefront shows fairly good agreement although the amplitude
agrees only qualitatively.

To investigate the temperature dependence, three cases are simulated with the
temperature ratio of the ambient to the jet being T1/T2 = 0.75, 1.0 and 1.5 at the
free-stream Mach number of M1 = 1.2. The DNS results indicate that as the jet
temperature increases, the radiated shock noise tends to lean toward downstream
when the pressure disturbance levels of instability waves are equal. This tendency can
be deduced from the analysis based on total internal reflection in a steady mixing
layer.

The outline of this paper is as follows. The theoretical background is described in
§ 2. The governing equations for the evolution of weak shocks are developed using
the similarity between geometrical acoustics and shock deformation. The dependence
on the temperature ratio is analysed based on total internal reflection in a steady
mixing layer. The mechanism of the sound leakage is explained based on the eikonal
equation. In § 3, the numerical procedures of DNS and time-dependent geometrical
acoustics are described. In § 4, the numerical results are discussed. This includes
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extensive comparisons with the geometrical theory, which verify the sound-leakage
mechanism discussed in § 2. Conclusions are presented in the last section.

2. Theoretical approach
2.1. Similarity between shock deformation and geometrical acoustics

To study the shock–vortex interaction in the context of jet screech, Manning &
Lele (2000) introduced geometrical acoustics and numerically demonstrated that the
solution obtained from geometrical acoustics coincides with the wavefront of shock
noise; however, the validity of the high-frequency limit applying to standing shock
waves was uncertain. This section gives a formal derivation of a method to estimate
the sound pressure level of shock waves using the similarity between the deformation
of weak shocks and geometrical acoustics. Analyses similar to this type in different
contexts may be seen in Keller (1954), Whitham (1974), Kevlahan (1996), Monica &
Prasad (2001), and others. The method described here is applicable to unsteady base
flows in arbitrary dimensions.

Consider a slightly under-expanded jet in which a standing shock wave is distorted
by large-scale vortices in the mixing layer. The strength of the shock is assumed small
(�p/p∞ � 1, p∞ being the ambient pressure) so that the flow is isentropic and the
shock does not disturb the base flow. Therefore, the steady deflection downstream
of the interaction defined by θd ≡ (2

√
M2

1 − 1/γM2
1 )(�p/p∞), where γ is the specific

heat ratio and M1 the jet Mach number (cf. Kerschen & Cain 1995), is ignored in
later analysis. Now, the pressure field is solved as a solution to the acoustic mode
in a shear flow. For a transversely sheared base flow the third-order convective wave
equation, referred to as the Pridmore-Brown equation (Pridmore-Brown 1958) or
Lilley’s equation (Lilley 1974), is expected to represent the solution:

D

Dt

[
D2Π

Dt2
− ∂

∂xj

(
a2 ∂Π

∂xj

)]
+ 2

∂uk

∂xj

∂

∂xk

(
a2 ∂Π

∂xj

)
= −2

∂ui

∂xj

∂uj

∂xk

∂uk

∂xi

, (2.1)

where, D/Dt ≡ ∂/∂t + uj∂/∂xj , and Π ≡ γ −1 log(p/p∞). It should be emphasized
that each quantity includes three parts, the mean, the unsteady vortical disturbance,
and the acoustic disturbance (i.e. p = p∞ +pvor + pac, etc.), where the magnitude of
the acoustic disturbance is much smaller than the other two parts. To non-
dimensionalize the equation, the following characteristic scales are used: the speed of
sound inside the jet aj is taken to be the velocity scale, and the vorticity thickness
δV to be the length scale. Therefore, ui denotes the local Mach number multiplied by
the local speed of sound, and a2 denotes the local temperature assuming an ideal gas
law.

When the acoustic wavelength is much shorter than the length scale over which
the medium varies (the vorticity thickness in the present case), and also the acoustic
frequency is much higher than the inverse time scale of medium evolution, we can
assume a high-frequency limit and apply geometrical acoustics. In such a case, we
should express the acoustic pressure disturbance by

Πac(t, x) ≡ 1

γ

pac

p
=

1

γ

P (t, x)

p
exp[iωφ(t, x)] ≡ P •(t, x) exp[iωφ(t, x)], (2.2)

where P • ≡ P/(γp). Velocity and temperature associated with the acoustic disturbance
can be similarly expanded. Likewise, consider a compression wave whose pressure
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amplitude is sufficiently weak but which is extremely narrow:

Π comp(t, x) ≡ P •(t, x)h[φ(t, x)/ε], (2.3)

where P •(t, x) ≡ P (t, x)/(γp) (|P | � 1), P corresponding to the strength of the
compression wave in terms of pressure and ε (0 < ε � 1) to the width of the
compression wave, and suppose that |∂P •/∂t |, |∂P •/∂xi | � ε−1. Here, h[z] is a
monotonically increasing function satisfying h[−∞] = 0 and h[+∞] = 1. For example,
Taylor’s weak shock profile (Lighthill 1956) yields h[x/ε] = [1+ tanh(x/ε)]/2 where
ε ≡ 4/(γ + 1)(4/3 + (γ − 1)/P r)µa/�p (Pr being the Prandtl number and µ the
viscosity). Accordingly, h[z] has the following character:

lim
ε→0

h[φ/ε] = H (φ) ≡
{

0 if φ < 0,

1 if φ � 0.
(2.4)

Therefore, the limit of ε → 0 corresponds to a weak shock wave, and a curve satisfying
φ(t, x) = 0 represents its wavefront. Again, the term ‘weak’ indicates that the flow is
still considered to be isentropic across the shock.

Now, compare (2.2) and (2.3), and observe their similarity. In the case of geometrical
acoustics, (2.2) and the corresponding acoustic velocity and temperature disturbances
are substituted into (2.1), and they are asymptotically expanded for large ω. By taking
the leading terms of ω, the eikonal equation is obtained:

(φt + ujφj )
2 − a2φ2

j = 0, (2.5)

where φt ≡ ∂φ/∂t , which corresponds to the local frequency, and φi ≡ ∂φ/∂xi to
the local wavenumber vector. Likewise, in case of a weak shock or a compression
wave, take the leading terms for small ε; as a result, the same eikonal equation is
obtained. Now, (φt , φi) represents the direction normal to the shock-front in space–
time coordinates.

To solve for the shock-front, we can apply the method of characteristics, i.e. break
the eikonal equation (2.5) into the following ODE system:

dt

dτ
= 1, (2.6)

dxi

dτ
= − a2

φt + ukφk

φi + ui, (2.7)

dφt

dτ
= −∂uk

∂t
φk +

φt + ukφk

2a2

∂a2

∂t
, (2.8)

dφi

dτ
= −∂uk

∂xi

φk +
φt + ukφk

2a2

∂a2

∂xi

, (2.9)

dφ

dτ
= 0. (2.10)

Equation (2.10) shows that characteristic curves are iso-contours of φ, one of which
is equivalent to the shock-front, say φ = 0. In this system, the parameterization of the
curve, τ , is normalized so that it is identical to the time scale. Thus, imposing the initial
conditions corresponding to a standing shock in the free-stream region, the shock-front
can be followed over the course of time. Note that this equation system (2.6)–(2.10)
is integrated in space–time coordinates; therefore, the instantaneous shock-front is a
cut of a characteristic bundle at constant time, not a projection of a characteristic
curve.
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Next, to solve for the amplitude fields, derive the first-order transport equation.
Substituting (2.3) and the corresponding acoustic velocity and temperature
disturbances into (2.1), we can follow the method used in geometrical acoustics.
Taking the second highest order of ε−1, it yields

2(P •
t + ujP

•
j )(φt + ukφk) − 2a2P •

j φj +
2a2P •φjφk

φt + ulφl

∂uk

∂xj

+P •
[
3

(
φtt + 2ujφtj + ujukφjk + φj

Duj

Dt

)
− a2φjj

]

− P •

[
γφj

∂p

∂xj

+ φj

∂a2

∂xj

+
φ2

j

φt + ulφl

Da2

Dt
+

2a2φj (φtj + ukφjk)

φt + ulφl

]
= 0. (2.11)

Here, again P •
t ≡ ∂P •/∂t and P •

i ≡ ∂P •/∂xi . To simplify (2.11), note that the
differentiation of (2.5) by D/Dt gives

2

(
φtt + 2ujφtj + ujukφjk + φj

Duj

Dt

)
+

2a2φjφk

φt + ulφl

∂uk

∂xj

−
[
φj

∂a2

∂xj

+
φ2

j

φt + ulφl

Da2

Dt
+

2a4φjφkφjk

(φt + ulφl)2

]
= 0. (2.12)

Using these relations, substitute (2.12) into (2.11). After simplifying it with (2.6) and
(2.7), we can obtain the following conservation form:

∂

∂t

[
(P •)2p

φt + ukφk

dt

dτ

]
+

∂

∂xj

[
(P •)2p

φt + ukφk

dxj

dτ

]
= 0. (2.13)

Hence, the quantity

P 2S

p(φt + ukφk)

√
a2

∞

∣∣∣∣ dt

dτ

∣∣∣∣
2

+

∣∣∣∣dx

dτ

∣∣∣∣
2

= Const. (2.14)

is conserved along ‘tubes’ consisting of characteristic bundles in a four-dimensional
sense (see figure 2). Here, S denotes the area of the tube normal to the direction of
characteristic lines in four dimensions (here, the time coordinate is normalized using
the ambient speed of sound): (a∞dt/dτ , dx/dτ ). This quantity (2.14) is analogous
to the ‘Blokhintzev invariant’ (Blokhintzev 1946) of geometrical acoustics. Therefore,
the field of P (t, x) is the same as the amplitude field of sound waves whose incident
propagation direction is aligned with the Mach angle. In numerical simulations,
the variation of S can be computed by issuing two families of such incident rays
separated by a small distance, say �w, and by keeping track of this distance and the
ray direction.

To solve the ODE system (2.6)–(2.10), set the initial conditions as follows so that
they satisfy the eikonal equation (2.5):

x(0) = xs, (2.15)

y(0) = ys, (2.16)

φt (0) = 0, (2.17)

φx(0) = − 1

asMs

, (2.18)
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Figure 2. Diagram of a ray tube or a ‘characteristic bundle’ for the time-dependent
geometrical acoustics.

φy(0) =
1

as

√
1 − 1

M2
s

, (2.19)

φ(0) = 0, (2.20)

where quantities with the subscript ‘s’ are evaluated at the initial position (xs, ys)
which is located on the shock-front in the free stream. Here, the initial direction of
characteristic curves is given by tan θs = 1/

√
M2

s − 1, which is identical to the Mach
angle. With these initial conditions, the time-dependent ODE system (2.6)–(2.10) can
be integrated together with the unsteady base flow data.

2.2. Analysis based on the total internal reflection

The condition for shock leakage across a vortex-laden mixing layer is one of the
main interests. As mentioned before, such a condition can be analysed using the
analogy between a ray trajectory and a shock-front. In the case of a ray trajectory,
if the mixing layer is steady and the angle of incidence in the free stream exceeds
the ‘critical angle’, no ray can penetrate the mixing layer, referred to as ‘total internal
reflection’ (see figure 3a). Since the Mach angle is always greater than the critical
angle, the shocks are confined to the core region forming a shock-cell pattern in a
steady flow. However, in an unsteady mixing layer, vortical disturbances allow some
portions of the shock to leak across the mixing layer and to radiate as sound waves
(figure 3b). As the critical angle is a function of the free-stream Mach number and
the temperature ratio, we could postulate that the shock-leakage condition follows
the difference between the critical angle and the Mach angle.

To derive the condition for total internal reflection, consider a transversely sheared
mixing layer in two dimensions. Similar types of analyses regarding total internal
reflection can be found in various contexts, such as Goldstein (1976). Now, suppose
that the free-stream Mach number on the lower side is supersonic (M1 > 1), and the
upper side is quiescent (M2 = 0). Figure 4 depicts a schematic of the flow geometry.
Here, the subscripts 1 and 2 denote the lower and upper sides, respectively. Likewise,
the speed of sound on the lower side is a1 = aj ≡ 1, and that on the upper side is
a2. Consider plane waves incident from the lower side and refracted in the mixing
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M = 0

Unsteady vortices

Sound leakage

M > 1
Incident waves Reflected waves

(a)

M = 0

M > 1
Incident waves Reflected waves

(b)
Total reflection

Figure 3. Plane wave propagation across a two-dimensional mixing layer.
(a) Steady mixing layer. (b) Unsteady mixing layer.
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Figure 4. Flow geometry and coordinate system.

layer. Knowing that ∂uk/∂xj for the base flow vanishes in the free stream, the form
of the plane wave solution, Π ∼ exp[−iω(t − k̄xx − k̄yy)], is substituted into (2.1).
Consequently, the solution for the wavenumber in the flow direction can be obtained
as follows:

k̄x =
cos θ1

a1(1 + M1 cos θ1)
at y = −∞, (2.21)

k̄x =
cos θ2

a2

at y = +∞. (2.22)

Here, M1 ≡ u1/a1 (= u1), and θ denotes the angle normal to the wavefront. (Note θ1

is not identical to the ray direction on the lower side. See figure 4 again.) As the flow
is homogeneous in the x-direction, k̄x is independent of the velocity and temperature
profiles in the mixing layer. Therefore, if |cos θ2| = |a2k̄x | > 1, no incident waves
propagate on the upper side. This yields the condition for total internal reflection,

θ1 < θcr
1 ≡ arccos

(
−1

a2/a1 + M1

)
. (2.23)

Figure 5 plots the critical angle θcr
1 as a function of the Mach number and compares

it with the Mach angle, defined by θM
1 ≡ arccos(−1/M1). It shows that θcr

1 increases in



Shock leakage through an unsteady vortex-laden mixing layer 147

0

5

10

15

20

25

30

35

40

45

50

Total reflection

Transmission

θ
cr 1 

  –
 9

0 
(d

eg
.)

1.0 1.5 2.0 2.5
M1

Figure 5. Mach angle and critical angle for total internal reflection: − · −, Mach angle; · · ·,
critical angle of cold jet (T1/T2 = 0.75); − − −, iso-thermal jet (T1/T2 = 1.); ——, hot jet
(T1/T2 = 1.5).

a hot jet (a2/a1 < 1) and comes closer to the Mach angle, while θcr
1 decreases in a cold

jet (a2/a1 > 1) provided that the Mach number is fixed. This suggests a hypothesis that
as the jet temperature increases, weak shocks can more easily penetrate the mixing
layer and propagate more toward downstream. This hypothesis is examined using
numerical simulations in § 4.1.

2.3. Mechanism of intense shock noise generation

As (2.23) shows, the critical angle is always lower than the Mach angle; hence, shock
leakage never occurs in a steady jet mixing layer. Therefore, intense shock noise
generation requires unsteady disturbances. In this paper the term ‘steady’ refers to the
case in which the mixing layer is undisturbed (as described in the previous section),
while the term ‘unsteady’ refers to the case in which the mixing layer includes large-
scale disturbances, namely a ‘vortex-laden’ mixing layer. However, the analysis for the
‘unsteady’ case in this section is carried out in the frame moving with the convective
velocity of the disturbance, and the base flow field is assumed steady. Nonetheless, the
word ‘unsteady’ is used for convenience. In this section, the sound-leakage mechanism
is analysed in an ‘unsteady’ mixing layer based on the eikonal equation.

In two dimensions, the time-evolution of the direction normal to the wavefront,
(2.8) and (2.9), can be rewritten as the following linear system:

d
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, (2.24)

where the velocity components are rewritten as u ≡ u1 and v ≡ u2.
To observe the overall sound-leakage mechanism, consider (2.24) in a frame moving

with the convective velocity of the vortices, uc, where the subscript c denotes the
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convective frame. In this frame, the time scale of the motions associated with instability
waves is given by 1/(uc × Im[kIN

x ]), where kIN
x denotes the complex wavenumber

of the instability waves in the x-direction. When this time scale is much longer
than the acoustic time scale associated with the spatial variation of the medium,
i.e. δV /a, the unsteady terms can be ignored (i.e. frozen flow). In other words,
|(1/a)(∂/∂t)| ∼ |Mc × Im[kIN

x ]| � 1/δV ∼ |∂/∂xi |, where Mc denotes the convective
Mach number of the vortices. In such a frame, (2.24) can be approximated as
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,

(2.25)

where u in the original frame is replaced by u − uc. It is important to note that the
solution to the eikonal equation in terms of the wavenumber vector is invariant to
the choice of references. Defining

Av(t, x(t), y(t)) ≡
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and

B(t, x(t), y(t)) ≡ −
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,

(2.25) can be expressed as

d

dt

(
φx

φy

)
= (Av + At )

(
φx

φy

)
+ B. (2.26)

For simplicity, first, consider the special case of an isothermal flow; thus, only the
velocity gradient tensor Av remains, and it may be decomposed into three parts:

Av = 1
2
(λ1 + λ2)I + 1

2

[(
Av + AT

v

)
− (λ1 + λ2)I

]
+ 1

2

(
Av − AT

v

)
≡ Dv + Sv + Rv, (2.27)

where λ1 and λ2 denote the eigenvalues of Av , and Dv represents dilatation, Sv shear-
strain, and Rv rotation. In particular, the rotation part can be expressed in terms of
the local vorticity ω:

Rv ≡ 1
2

(
Av − AT

v

)
=

1

2

(
0 −ω

ω 0

)
. (2.28)

Thus, the local vorticity rotates the wavefront normal. Alternatively, we can deduce
this effect by reformulating (2.26) as dφi/dt = εijkωjφk − φj (∂ui/∂xj ) for an isothermal
case (cf. Whitham 1974; Pierce 1989). As seen later (figures 11–13), when the local
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vorticity is sufficiently strong, ray trajectories create loops and total internal reflection
occurs. By contrast, if the local vorticity is weak, as would occur near the saddle
points, the effect of refraction diminishes and rays tend to penetrate the mixing layer.
Thus, the rotation term plays an important role in the shock-leakage mechanism.
Note that the shear-strain term Sv also contributes to the rotation at a comparable
level, and its effect has a similar trend as Rv , as discussed in § 4.2.

Knowing the contribution from the velocity gradient tensor Av , consider the effects
of temperature gradient. The steady part of the temperature effect has been discussed
in the previous section. Hence, the focus in this section is on the unsteady part
of temperature effects, which may be categorized into two parts: the compressible
and entropic effects. The compressible effect refers to the contribution of temperature
variation induced by a finite Mach number flow field, whereas the entropic effect refers
to the contribution due to the deformation of the temperature field mainly associated
with the entrainment of the mixing layer. These two effects are considered below.

First, consider the compressible effect based on the case in which the temperature
ratio of the mixing layer is unity (called ‘iso-thermal jet’ here). Meiron, Moore &
Pullin (2000) studied compressible saturated vortices in a two-dimensional mixing layer
based on the Stuart vortex model (Stuart 1967). They showed that the temperature
variation due to the compressible effect becomes secondary as long as ((M1 − Mc)/2)2

is sufficiently small.
To quantitatively evaluate the compressible effect, we can decompose the transfer

matrix At in (2.26) into three parts in a similar manner to the derivation of Av .
Consequently, the rotation term yields

Rt ≡ 1
2

(
At − AT

t

)
=

1

2

(
0 −�

� 0

)
, (2.29)

where

� ≡ 1

2a2

(
u

∂a2

∂y
− v

∂a2

∂x

)
. (2.30)

This scalar, � , gives the extra rotation effect on the wavenumber vector due to
temperature variation. In fact, numerical results shown later confirm |� | � |ω|. The
rate of rotation due to the shear-strain term St becomes equivalently small.

For non-isothermal jets, the entropic effect becomes appreciable. The entropy
variation via Rt and St in a hot jet alleviates the rotation effect, while that in a cold
jet enhances it. Thus, this effect follows the trend derived in the steady mixing-layer
analysis in which rays should more easily penetrate the mixing layer and propagate
more toward downstream for a hot jet.

Finally, consider the inhomogeneous term B in (2.26) by comparing the steady and
unsteady cases. If the mixing layer is steady, only the y-component exists in B and
the result of the steady analysis is valid regardless of the thickness of the mixing
layer. Now, the temperature contour (for example, Case A in figure 6) indicates that
the unsteady temperature field near the saddle point may be locally approximated by
simply rotating the steady field by an angle −α. Thus, the difference of B between
the steady and unsteady cases is given by

Bun − Bst =

(
1

2a2

∂a2

∂y

)st ( −sin α

1 − cos α

)
as α → 0, (2.31)

where ‘st ’ and ‘un’ stand for steady and unsteady cases, respectively. With a reasonable
value of α, say 0 < α < π/4, the orientation of the vector in (2.31) (− sin α, 1−cos α)T
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Saddle point

α

Figure 6. Slope of the temperature contour. The definition of α is shown. The temperature
contour is taken from Case A (see table 2).

�t Nx Ny �x �y Xin, Xexit, Xmax Ymin, Ybottom, Ytop, Ymax

1/96 1200 450 0.03 ∼ 0.17 0.04 ∼ 0.12 5.00, 54.71, 83.00 −11.62, −8.62, 17.00, 20.00

Table 1. Parameters for computation in DNS. �t denotes the time step (×δV /a2). Nx and Ny

represent the numbers of grid points in the x- and y-directions, respectively. Likewise, �x
and �y denote the grid sizes in the physical domain in those directions. The length scale was
normalized by the vorticity thickness δV defined by (3.1). See figure 7 for a diagram of the
computational domain. The grid is stretched in the x-direction in the buffer zone.

Case T1/T2 Re1 ≡ ρ1u1δV /µ1 Re2 ≡ ρ2a2δV /µ2 ω Re[kx] Im[kx]

A 0.75 3000 1721 0.3927 0.6166 −0.2603
B 1.0 2000 1667 0.3927 0.5795 −0.2656
C 1.5 1200 1648 0.3927 0.5310 −0.2763

Table 2. Parameters of flow fields in DNS. ω, Re[kx], and Im[kx] denote the angular frequency,
the real part of the wavenumber, and that of the imaginary part for the instability waves,
respectively.

lies in the same quadrant as or opposite quadrant to (the second or fourth) the normal
to the shock-front (φx, φy)

T for leaking rays. Recall that the direction normal to the
shock-front evolves over the angle range of θ1 ∼ [arccos(−1/M1), π) as it propagates
across the mixing layer. Therefore, the term B mainly contributes to expansion or
compression of the wavenumber vector, but barely to rotation of the shock-front.

These qualitative analyses regarding the rotation effect from each term are verified
using DNS in § 4.2.

3. Numerical procedures
3.1. Direct numerical simulation (DNS)

In this study, the full Navier–Stokes equations were explicitly solved in two-
dimensions. For time marching, the fourth-order Runge–Kutta scheme was used,
and the time step was set to be constant. For spatial derivatives, the sixth-order Padé
scheme was used at interior points. For the boundary points, lower order (third and
fourth) Padé schemes were used (see Lele 1992 for details). The time step, the grid
size, the domain size, etc. are specified in table 1.

To investigate the temperature effects of the mixing layer, three different
temperature ratios were simulated (see table 2). The initial velocity field was found by
solving compressible boundary-layer equations with the boundary conditions being
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Sponge boundary

Velocity profile

Stretching buffer zone

0 Xin Xexit Xmax

Physical domain

y

Ymax

Ytop

Ybottom

Ymin

M∞ = 1.2
Inflow forcing Sponge boundary

(and compression wave forcing)

x0

Figure 7. The computational domain for DNS.

M1 = 1.2, p1 = 1 and T1 = 1 at y = −∞, and M2 = 0 and p2 = 1 at y = ∞. T2 and
Reynolds numbers are specified in table 2. The initial temperature field was given
by the Crocco–Busemann relation. The Prandtl number was set to be Pr = 0.7. The
Reynolds numbers were selected so that the viscous effects in the ambient region were
similar in all cases (see Re2 in table 2). In computation, all quantities are normalized
by the vorticity thickness δV and the ambient speed of sound a∞(= a2). The vorticity
thickness is defined as

δV =
Ux

(∂Ux/∂y)max

(3.1)

at x = 20δV , where the velocity profile was set so that ∂Ux/∂y takes maximum at
y = 0.

For the boundary treatment, the non-reflecting boundary conditions (Giles 1990)
were used. In addition, so-called ‘damping-sponges’ (Freund 1997) were implemented
at the inflow, the top, and the bottom regions (see figure 7) to prevent spurious
reflection of acoustic waves. In the exit zone, the grid spacing was stretched (stretching
ratio was �xi+1/�xi = 1.04), and the ‘supersonic convection terms’ (Freund 1997) as
well as the following low-pass explicit filter (Colonius, Lele & Moin 1993) were
applied in the flow direction (see Lui & Lele 2001 for details):

f̂ n ≡ a(x)fn − 2
3
[a(x) − 1](fn+1 + fn−1) + 1

6
[a(x) − 1](fn+2 + fn−2), (3.2)

where

a(x) = 5
8

+ 3
8

× 1

1 + e−c(x−xt )/(xp−xt )
. (3.3)

The parameters shown above were set to be c = 3, xp = 53δV , and xt = 58δV ; thus,
there is no filtering in the physical domain with the filter coefficients being gradually
activated toward the exit buffer zone. Additional details and validation tests can be
found in Suzuki (2001).

Through the inflow sponge, Kelvin–Helmholtz instability waves were forced at
a single frequency of f IN =1/16, which is slightly lower than the most unstable
eigenmode to avoid vortex pairings in the domain of interest. The dispersion relation
for spatial instability waves is shown in figure 8. The eigenfunctions were calculated
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Figure 8. Growth rate of instability waves. Dispersion relations were calculated based on the
initial velocity profile of DNS (M1 = 1.2) at x = 5δV : · · ·, cold jet (Case A); − − −, iso-thermal
jet (Case B); ——, hot jet (Case C). � denotes the forcing frequency in DNS.
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Figure 9. Pressure disturbance levels of instability waves. Pressure amplitudes at the centre
line (y = 0) are plotted. Two time-periods of the instability waves were processed using discrete
Fourier transform in DNS: · · ·, cold jet (Case A); − − −, iso-thermal jet (Case B); ——, hot
jet (Case C). Note that the amplitude in Case A decreases toward downstream because the
centreline of the mixing layer considerably deviated from y = 0.

by a shooting method. The forcing levels of the instability waves were tuned so that
their pressure levels in the domain of interest became similar in all cases (see figure 9).

To avoid computational difficulties, a compression wave was imposed to simulate
a shock wave. It was extended from the bottom sponge region only after vortices
had developed fully (t � 100), and the interaction with the unsteady vortices was
computed. The position of the compression wave was set so that it would interact
with the mixing layer at (35.0, 0) if the mixing layer was steady. The amplitude of
the compression wave in the free stream was set to be �p/p∞ ≈ 0.10, and its width
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Figure 10. Flowchart of the numerical methods.

to be �w/δV = 1.8 cos(−θM
1 ). The pressure profile of the wave was specified as a

hyperbolic tangent function. Across the width of the compression wave defined above,
approximately 40 grid points were included. An expansion wave of the same intensity
was also imposed downstream on the bottom sponge to suppress the deflection of
the mixing layer. To measure the amplitude of shock noise, 60 observer points were
distributed on a circular arc using the grid points of the DNS with a radius of
R ≈ 14δV centred at (35.0, 0). The pressure jumps due to the compression wave were
recorded at these points. The detailed procedure to extract pressure jumps from DNS
is described in the Appendix.

3.2. Time-dependent geometrical acoustics scheme

To study the evolution of shock-fronts, the eikonal equation was solved using the
unsteady DNS base flow without a compression wave. A simple flowchart is given
in figure 10. The ODE system of the eikonal equation (2.6)–(2.10) was numerically
integrated using the standard fourth-order Runge–Kutta scheme with the same time
step as DNS. The velocity and temperature from DNS were found from the six
nearest DNS grid points using a second-order interpolation. The initial conditions for
the compression wave given in (2.15)–(2.20) were imposed at the bottom sponge in
figure 7, where as = a1 and Ms =M1. To calculate the threshold of the shock leakage,
the initial positions of characteristic lines were xs ∈ [10.0, 35.0], and ys = −7.5 in
all cases (figures 11–13). A total of 251 rays was issued. On the other hand, to
calculate shock-fronts over time, the initial positions were aligned on two lines with
�w/δV = ± 0.02 cos(−θM

1 ) apart from the centreline of the compression wave: the
angle normal to the compression wave is given by θM

1 ≡ arccos(−1/M1). Here, 200
rays were distributed on each line. To calculate amplitude based on the Blokhintzev
invariant (2.14), the area change was computed using six adjacent rays (three rays
on each line). Finally, the computed amplitude directivity was fit by an eighth-order
polynomial. The rays were also issued only after the vortices had developed fully
(t � 100).

4. Results and discussion
4.1. Trajectories of weak shock waves

To investigate the threshold for shock leakage, the trajectories of shock-fronts
computed based on the time-dependent eikonal equation system are shown in
figures 11–13. Figure 11 (Case B) shows that shock waves tend to leak between
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Figure 11. Shock-front trajectories in an iso-thermal jet mixing layer (Case B). Vorticity
contour at the time when the rays with the initial conditions pass y = 0 is overlapped. �1 and
�2 denote the trajectories (drawn by the thicker dashed and solid lines, respectively) discussed
in figures 14 and 15.

Figure 12. Shock-front trajectories in a cold jet mixing layer (Case A). Notation is the same as
figure 11. �3 denotes the trajectory (drawn by the thicker line) discussed in figures 19 and 20.

the saddle point and the trailing edge of the vortex. As conjectured in § 2.3, sound
leakage occurs near the saddle point, in which local vorticity becomes weak. Moreover,
as the vortices develop, the number of rays penetrating the mixing layer increases:
more rays penetrate near the downstream saddle point (around x ∈ (33, 37)) than the
upstream saddle point (x ∼ 28) in figure 11.

These features of shock leakage are consistent with the DNS study of Manning &
Lele (2000). They also observed that compression waves penetrate between the vortices
by computing the linearized Euler equations with the Stuart vortices. Similarly,
Suzuki & Lele (1999) numerically studied scattering problems in subsonic mixing
layers (M1 = 0.3) in two dimensions, and showed that plane waves whose angle of
incidence is greater than the critical angle can leak across a subsonic vortex-laden
mixing layer near saddle points.
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Figure 13. Shock-front trajectories in a hot jet mixing layer (Case C). Notation is the same as
figure 11. �4 denotes the trajectory (drawn by the thicker line) discussed in figures 19 and 20.

The series of figures 11, 12 and 13 compares the shock leakage for different
temperature ratios. In these figures, an attempt was made to synchronize the relative
phases of the vortices (the centre of the saddle point is about x ≈ 27) to clearly
compare these cases. As discussed in § 2.2 (see figure 5), the analysis based on a steady
mixing layer predicts greater leakage as the temperature of the jet increases. In fact,
the comparison of these figures demonstrates that as the temperature on the high
velocity side (the lower side) increases, the number of rays penetrating the first saddle
point (x ∼ 27) increases, i.e. the number of rays is 4, 6 and 8 for the temperature
ratios of T1/T2 = 0.75, 1.0 and 1.5, respectively. However, when the vortices are fully
developed, the spacings of the vortices become more important, and the number of
rays penetrating the mixing layer do not follow the steady mixing-layer analysis. At
the second (downstream) saddle point, the number of rays changes to 11, 12 and 9
for T1/T2 = 0.75, 1.0 and 1.5. Instead, the radiated direction of the leaked rays tends
to lean toward downstream, as discussed later. Note that the phases of the vortices
are not exactly synchronized at the second saddle point since the wavelength of the
instability waves varies as the temperature ratio changes (see Re[kx] in table 2).

4.2. Rotation effects from the base flow

Now, the rotation effect on ray trajectories from each term is confirmed referring to
the analyses in § 2.3. Defining nφ ≡ (φx, φy)

T /|(φx, φy)
T |, the rate of rotation θ̇ due

to Sv is given by

θ̇ (Sv) ≡ nφ × [Svnφ − (Svnφ · nφ)nφ], (4.1)

while the rate of rotation due to Rv is simply given by θ̇(Rv) = ω/2 from (2.28).
Figure 14 compares these contributions to the rotation rate for two representative
rays (which can be identified in figure 11). Figure 14(a) confirms that the diminished
local vorticity near the saddle point reduces the overall turning of the wavefront.
Figure 14(b) shows that the shear-strain term Sv contributes to the rotation at a
comparable level and even weakens the rotation effects near the saddle points: their
net rotation effects are opposite for trajectories 1 and 2 because their wavefront
normals are oriented on opposite sides to the principal axis of the matrix Sv as the
rays approach the saddle point. For the trajectory 1, the wavefront is rotated by a
total angle of 71.4◦ (the net area under the sum of the curves in figures 14(a) and
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Figure 14. Rate of rotation from transfer matrix Av . The rates of rotation for two rays
denoted in figure 11 (Case B, isothermal) are plotted: − − −, trajectory 1; ——, trajectory 2:
(a) for Rv; (b) for Sv .

Trajectory number Rv Sv Rt St B

Case B, 1© 43.0 28.4 0.9 1.5 4.3
Case B, 2© 18.9 −60.5 −0.2 −2.0 −9.2
Case A, 3© 10.5 −96.5 4.2 0.2 2.1 (26.2)
Case C, 4© 26.8 −64.4 −2.7 −4.0 −37.8 (−44.5)

Table 3. Net rotation angle from each component. The values in parentheses in the column
for B are the steady values.

14(b) excluding the temperature effect), which yields total internal reflection. On the
other hand, that for the trajectory 2 is rotated by −41.6◦ (refer to the columns for Rv

and Sv in table 3); thus, this ray can penetrate the mixing layer.
Figure 15 depicts the rates of rotation due to Rt and St for the same trajectories as

figure 14 (the definition is similar to (4.1)). It shows that the overall effect from At is
much smaller than that from Av for the isothermal case (see table 3 again).

Furthermore, the quantity � is computed based on DNS and compared with
the vorticity ω in three cases (figures 16–18). Here, the convective velocity is
assumed to be M1a1/2. Figure 17 (isothermal jet, Case B) confirms that the effect of
temperature gradient is much smaller than the vorticity, i.e. |� | � |ω|. Thus, the effect
of temperature gradient associated with compressibility is negligible.

Next, consider the entropic effect for the application of non-isothermal jets. Figures
16 and 18 (Cases A and C) compare the contours of ω and � for cold and hot jets,
respectively. They consistently show that the variations in ω and � are comparable,
although both become small near the saddle points. Figure 19 shows the rates of
rotation due to Rt and St in cold and hot jets (their trajectories 3 and 4 can be
identified in figures 12 and 13, respectively), and table 3 compares their net rotation
angles. They show that the magnitudes of the rotation angles in the non-isothermal
cases are greater than those in the isothermal case (figure 15), but relatively small.
The important observation is that the entropy variation in a hot jet alleviates the
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Figure 15. Rate of rotation from transfer matrix At . Notation and conditions are the same
as figure 14: (a) for Rt ; (b) for St .
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Figure 16. Flow quantities of an cold jet mixing layer (Case A, M1 = 1.2 and T1/T2 = 0.75).
(a) ω: vorticity contour, ωmin = 0.1 and ωmax = 1.5 with the interval of �ω =0.1. (b) � : contour
of the rotation rate due to temperature gradient. �min = −0.5 & �max =0.4 with the interval
of �� =0.1. �+ denotes the counterclockwise rotation, and �− the clockwise rotation.
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Figure 17. Flow quantities of an iso-thermal jet mixing layer (Case B, M1 = 1.2 and
T1/T2 = 1.0). (a) ω: vorticity contour, ωmin = 0.1 and ωmax = 1.6 with the interval of �ω = 0.1.
(b) � : contour of the rotation rate due to temperature gradient. �min = −0.10 and �max = 0.10
with the interval of �� = 0.05. The rest of the notation is the same as figure 16.

rotation effect, whereas that in a cold jet enhances it. It should be remembered that
the same trend was observed in the steady mixing-layer analysis.

Finally, figure 20 compares the rates of rotation from B in (2.26) between the steady
and unsteady cases for cold and hot jets. Note that the magnitudes of these rates
are comparable to or even larger than those from Av (refer to figure 14 and table
3). Both cold and hot jet cases show that although the effective duration of rotation
becomes shorter, the net rotation angle does not change significantly (compare the
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Figure 18. Flow quantities of a hot jet mixing layer (Case C, M1 = 1.2 and T1/T2 = 1.5). (a)
ω: vorticity contour, ωmin =0.1 and ωmax =1.9 with the interval of �ω = 0.1. (b) � : contour of
the rotation rate due to temperature gradient. �min = − 0.4 and �max =0.8 with the interval
of �� = 0.1. The rest of the notation is the same as figure 17.
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Figure 19. Rate of rotation from transfer matrix At for cold and hot jets. The rates of
rotation are compared in non-isothermal cases: · · ·, cold jet (Case A, trajectory 3 in figure 12);
and ——, hot jet (Case C, trajectory 4 in figure 13). (a) for Rt ; (b) for St .
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Figure 20. Rate of rotation from input vector B for cold and hot jets. The rates of rotation
are compared in non-isothermal cases: · · ·, cold jet in an unsteady case (Case A, trajectory 3
in figure 12); − · ·−, that in a steady case; ——, hot jet in an unsteady case (Case C, trajectory
4 in figure 13); − · −, that in a steady case.

values in the column for B in table 3). Thus, the unsteady effect via the term B is
relatively small.

4.3. Shock-front evolution

The time evolution of the shock-fronts from geometrical acoustics is presented in
figure 21 (iso-thermal case, Case B). This figure shows that an oblique shock wave
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Figure 21. Evolution of the shock-front. Shock-fronts were solved by the eikonal equation
with the base flow in Case B: ——, compression waves; − − −, expansion waves. � keeps
track of a certain point on shock-fronts. The shock-fronts are drawn every 2 × δV /a2.

creates a kink and forms two branches as it radiates into the far field. The wavefronts
become nearly circular, and they propagate over wide angles including the upstream
direction. Knowing that such a kink corresponds to the reflection point of a shock-
cell, the branch propagating behind is considered to be an expansion wave. When
the strength of the shock is sufficiently weak, the acoustic amplitude field can be
calculated by superposing the solutions for these two branches. However, when the
shock becomes nonlinear, the expansion branch is expected to spread, while the
compression branch tends to maintain its total strength. This is confirmed with DNS
as depicted in figure 23.

In figure 21, one point on the shock-front which initially coincides with the branch
point is followed in time. This point propagates with nearly the speed of sound. This
also shows that the branch point is not a characteristic line. The compression branch
reflects at the branch point, and this point shifts to the expansion branch.

Figures 22 and 23 compare the evolution of shock-fronts found from the eikonal
equation and from DNS. They show fairly good agreement in which the shock wave
starts to leak near the saddle point and forms a compression branch followed by an
expansion branch. However, the wavefronts calculated using DNS tend to propagate
forward, and their shape spreads over a wider angle. Recall that in geometrical
acoustics the compression wave must be weak (�p/p∞ → 0), while in DNS it is
finite (�p/p∞ ∼ 0.10). Therefore, the nonlinearity of the shock wave may cause such
discrepancies even though the base flow field does not change significantly.

4.4. Temperature dependence of shock noise amplitude

Finally, figures 24–26 compare the amplitude of compression waves between DNS
and the geometrical theory for different temperature ratios. All three figures show
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Figure 22. Evolution of the shock-front calculated using the eikonal equation in Case B.
Shock-fronts are drawn with dilatation and vorticity contours in the course of time (interval
of �t = 5). �+ and �− indicate expansion and compression, respectively.
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Figure 23. Evolution of the shock-front calculated in DNS. A compression wave is imposed,
and dilatation fields corresponding to the series of figures 22 are shown. Notation and time
generation are the same as figure 22.
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Figure 24. Comparison of compression wave amplitude between DNS and geometrical theory
for a cold jet mixing layer (Case A). The pressure ratios of the compression wave at distance
R ≈ 14δV centred at (35.0, 0) are plotted. The pressure ratio is defined as (�pR=14)/(�pymin

):
�, DNS; ——, geometrical theory.
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Figure 25. Comparison of compression wave amplitude between DNS and geometrical
theory for an iso-thermal jet mixing layer (Case B). Notation is the same as figure 24.
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Figure 26. Comparison of compression wave amplitude between DNS and geometrical
theory for a hot jet mixing layer (Case C). Notation is the same as figure 24.
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Figure 27. Directivity of integrated shock noise intensity at different temperature ratios.
Integrated intensities defined by (Ĩ x , Ĩ y) ≡ (

∫ π
0 p2(θ ) cos θ dθ,

∫ π
0 p2(θ ) sin θ dθ ) obtained from

figures 24–26 are plotted in a polar plot: ···, cold jet (Case A); − − −, iso-thermal jet (Case B);
and ——, hot jet (Case C).

that the overall sound pressure level of DNS is comparable to the geometrical theory,
although the detailed directivity of shock noise is not predicted well. It is interesting
to note that the radiation pattern obtained from DNS in the hot jet case (figure 26) is
similar to the peak tonal noise radiation pattern experimentally obtained by Walker
& Thomas (1997) (their figure 6). It should be mentioned that it is very difficult to
distinguish clearly the acoustic pressure from the hydrodynamic disturbances in DNS.
The estimated amplitude error may be as much as ∼ ±15% (refer to the Appendix).
Moreover, the distortion of the mean flow as well as the nonlinear propagation effects
can cause discrepancies, as mentioned above.

The series of figures 24, 25 and 26 indicates that the shock noise intensity is weakly
enhanced toward downstream as the jet temperature is increased (see figure 27 for an
integrated measure of the intensity). Recall that the analyses in § 2 imply that shocks
can more easily leak and propagate more toward downstream as the jet temperature
increases; moreover, the spacings between the vortices becomes wider as well (refer
to Re[kx] in table 2). This may explain the directivity changes. However, the total
pressure amplitude seems to decrease as the jet temperature increases, which appears
to contradict the analyses. As figure 9 shows, the amplitudes of the disturbance
level do not perfectly coincide. In fact, the disturbance amplitude slightly increases
downstream as the jet temperature increases, although the viscosity inside the jet
becomes greater. Thus, a more complete parametric study is necessary to investigate
the temperature dependence.

In fact, previous numerical work by Shen & Tam (2000) reported a similar trend
(their figure 10). Their result also showed that the downstream intensity increases
significantly as the jet temperature increases. However, the dipole-like radiation
pattern which they computed is not observed in the present results. It should be
emphasized that Shen & Tam (2000) computed the sound pressure levels from
multiple shock noise sources in a whole round jet, while the current result represents
the strength of the compression wave from a single noise source in two-dimensions.
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Importantly, the radiation pattern changes considerably when the superposition of
the noise from all sources is considered.

5. Conclusions
In this study, shock noise associated with a supersonic mixing layer is investigated

theoretically and computationally. The key points are summarized as follows.
The mechanism of shock noise is explained using a geometrical theory which is

analogous to geometrical acoustics. From the system of the eikonal equation, it is
deduced that the shock tends to leak near the saddle points of vortices convected in
the mixing layer. In fact, this mechanism is numerically demonstrated by solving the
time-dependent eikonal equation using the unsteady DNS data.

The time evolution of the shock-fronts and the amplitude of the shock noise are
calculated based on the time-dependent eikonal equation using the unsteady DNS
data, and the results are in good agreement with the full DNS for the shock-fronts.
Both results show that radiated shock noise forms two branches: a compression wave
followed by an expansion wave. However, the comparison of amplitude does not
agree quantitatively in terms of directivity. Compared with the previous theories of
shock–vortex interaction, time-dependent geometrical acoustics can capture fast shock
motions (i.e. the propagation speed is comparable to the speed of sound). Instead, the
present theory uses the simplified condition across the shock, i.e. isentropic assumption,
and neglects any hydrodynamic response from the interaction. This probably causes
the discrepancy in amplitude.

The temperature dependence of shock leakage is analysed based on an analogy
with total internal reflection in a steady mixing layer. The analysis suggests that
shock waves leak more easily as the jet temperature increases. The numerical results
from both geometrical theory and DNS also follow the trend that the direction of
the radiated shock noise weakly shifts downstream as the jet temperature increases.
However, detailed parametric study is necessary for definitive prediction of the shock
noise amplitude.

Previous experimental studies (such as, Walker & Thomas 1997; Panda 1999) have
indicated that the shock noise is most intensive somewhere between the second and
fourth shock-cell locations. We can understand such a trend based on this study.
Shock waves can leak through the mixing layer and generate intense noise only after
the unsteady vortices have developed sufficiently. However, when smaller-scale eddies
develop further downstream, the organized vortical structure is disrupted so that clear
saddle points are no longer formed, and the intensity of the shock noise is reduced
again. Since the width of shock waves is much thinner than any scales of vortical
disturbances, shock-fronts can be easily scattered by turbulence (Lee, Lele & Moin
1993). Instead, broadband shock noise is generated.

On the contrary, it also implies that disruption of the organized large-scale structures
may reduce the intensity of shock noise. This explains the mechanism of some
noise suppression techniques (Norum 1983; Krothapalli, McDaniel & Baganoff 1990;
Samimy et al. 1998). Some of these studies indicated that the streamwise vortices
tend to disrupt the large-scale structure of the fundamental unstable mode. Such an
observation also suggests that a slight exit modification could substantially influence
the initial disturbance of the instability waves; accordingly, the amplitude of the
screech noise can strongly change.

Thus, the shock leakage across an unsteady vortex-laden mixing layer is investigated
in the context of the jet screech problem. This asymptotic analysis should help
understand the shock noise mechanism.
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Figure 28. Example of extracted shock noise amplitude in DNS. Time history of pressure at
R ≈ 14δV and θ ≈ 60◦ in Case B is plotted: ——, raw DNS data; · · ·, pressure profile consisting
of first three modes; − − −, subtracted pressure profile.
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Figure 29. Shock noise extracted from pressure profiles and dilatation profiles. For
comparison purposes, pressure jumps calculated from the dilatation profiles (denoted by
� at nine representative angles) are overlapped on those from the pressure profiles (denoted
by �) in Case B. Notation is the same as figure 24.
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Appendix. Post-processing to extract shock noise amplitude
To calculate the shock noise amplitude in DNS, pressure is recorded every �t =

1/16 at each observer position (see figure 28 for an example of a time history
of pressure). However, since the hydrodynamic pressure field is still fairly large at
the observer points (R ≈ 14δV ), pressure jumps of shock noise cannot be measured
directly in DNS. To suppress the hydrodynamic pressure, the pressure profiles were
transformed into the frequency domain using a Fourier transform, and the lowest
three modes were eliminated. Subsequently, they were transformed back into the time
domain, and the difference between the local maximum and minimum was defined
as the pressure jump �p as shown in figure 28. In this process, the magnitude of
the pressure jump is reduced approximately by 15% (base on the hyperbolic tangent
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profile with the same slope); hence, this reduction was taken into account in the
polar plots. To evaluate the accuracy of this data processing, dilatation profiles were
similarly processed and converted to pressure jumps by integrating them in time. The
comparison is shown in figure 29. The estimated error is also approximately up to
15%.
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